

Development of new xanthendiol derivative applied to the negative-tone molecular resist for EB/EUVL

<u>Takashi Sato</u>, Yumi Ochiai, Kana Okada, Takashi Makinoshima, Masaaki Takasuka and Masatoshi Echigo

A MITSUBISHI GAS CHEMICAL COMPANY, INC.

Motivation for Negative - Tone Resist

Table LITH3A Resist Requirements

2012 ITRS Roadmap

Year of Production	2011	2012	2013	2014	2015	2016	2017	2018	2019
DRAM ½ pitch (nm) (contacted)	36	32	28	25	23	20	18	16	14
Flash ½ pitch (nm) (un-contacted poly)	22	20	18	17	15	14	13	12	11
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	38	32	27	24	21	19	17	15	13
		22		18	17		14	13	
MPU gate in resist length	(nm)	31	28	25	22	20	18	16	14
Kesist meets requirements for gate resolution and gate CD control (nm, 3 sigma) **†	2,3	2.1	1.9	1.8	1.7	1.6	1.5	1.3	1.2
Resist thickness (nm, single layer) ***	40-80	40-75	35-65	30-60	30-55	25-50	25-50	20-45	20-40
PEB temperature sensitivity (nm/C)	1	1	0.8	0.8	0.8	0.8	0.6	0.6	0.6
Backside particle density (particles/cm²)	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Back surface particle diameter: lithography and measurement tools (nm)	100	100	75	75	75	50	50	50	50
Defects in spin-coated resist films (#/cm²) †	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in spin-coated resist films (nm)	20	20	20	20	10	10	10	10	10
Defects in patterned resist films, gates, contacts, etc. (#/cm ²)	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
AINIMBIN ACIDET CICA IN NATIONAL POCIET (NIM)	20	ZU		20	10		10	10	
LWR (3sigma) <8% of CD	2.8	2.5	2.2	2.0	1.8	1.6	1.4	1.3	1.1
	23.3	24.4		106	17.0		12.6	42.0	
Defects in spin-coated resist films for double patterning (#/cm2)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Backside particle density for double patterning (#/cm2)	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14

Negative-tone resists are limitedly influenced by flare. We believe Negative-tone resist can achieve these required properties.

Design Concepts for New Negative—tone Symposium 2014 Molecular Resist Material

Motivation for negative-tone molecular resist

- Phenylcalix [4] resorcinarenes are small-size and high-Tg molecules, enough for patterning high-resolution and low-LER.

Our proposal for molecular resist materials.

M. Echigo et al., 5th International EUV Symposium, 01-RE-27 (2006)

Previous Data (Negative-tone resist using MGR108)

MGR108

EUV LS Pattern						
CD (nm)	26					
Esize (mJ/cm ²)	24.0					
LWR (nm)	6.1					
nZ (32)	12.8					

By courtesy of SEMATECH

- Patterns were well defined at ≤30 nmhp.

Applied example (Negative-tone resist using MGR108)

Applied resist containing MGR108 patterned 15nm dense L/S at 14mJ/cm² with LBNL-MET.

Developing solution: TMAH

Development of xanthendiol derivative

- 13-Biphenyl-13H-benzoxanthen-3,10-diol, MGR202, was developed.

General synthesis of xanthendiol derivative

Xanthendiol derivatives were synthesized between aldehyde and dihydroxynaphtalene.

Solubility of MGR202 in resist solvents (A and alkaline developer (B

Sample	PGMEA	PGME	CHN	0.26N TMAHaq
MGR202	Soluble	Soluble	Soluble	Soluble

A = Insoluble: < 2 wt%; Barely soluble: 2-5 wt%; Soluble: > 5wt%,

B = Insoluble: < 5 nm/min; Barely soluble: 5-50 nm/min; Soluble: > 50nm/min

The solubility of MGR202 is good for the raw material for the molecular resist

Comparison between TGA themogram of MGR202 and that of Bisnaphthalenediol A

The xanthene structure was rigid structure and seem to increase the thermal stability.

Experiment (Resist composition)

Matrix : MGR202

PAG-1 : Sulfonium sulfonate

HMMM : Hexamethoxymethylmelamine

Q-1 : Amine

PGME : Propylene glycol monomethyl ether

Difference of Resist A and Resist B:

1. Combination ratio of each ingredient, 2. PAB condition

MGR202

 $\begin{array}{ccc} \text{H}_3\text{COH}_2\text{C-N-CH}_2\text{OCH}_3 \\ \text{N} & \\ \text{N} & \\ \text{H}_3\text{COH}_2\text{C} & \\ \text{N} & \\ \text{H}_3\text{COH}_2\text{C} & \\ \text{CH}_2\text{OCH}_3 \\ \end{array}$

$$CF_3SO_3^-$$

HMMM

$$C_8H_{17}$$

 $N-C_8H_{17}$

PAG-1

Q-1

Experiment (EB Patterning Evaluations)

Process Conditions:

Substrate: Organic layer (UL)

Film Thickness: 30-40nm

PAB: 110 - 120℃/90s

PEB: 110°C/90s

Dev.: TMAH 0.26N 60s

EB Patterning Evaluations:

Apparatus

Ultra—High Precision EBL System at MGC

(ELS-7500 : Acceleration Voltage 50 keV)

at Mitsubishi Gas Chemical (MGC)

Analysis Conditions: SEM:S4800

EUVL Patterning Evaluations:

Apparatus

BL9B beamline at NewSUBARU synchrotron light source 10.8m long undulator

at Center for EUVL, University of Hyogo

ELS-7500

Etching Resistance

Process Conditions:

Reference: Novolac Resin

Bake Temperature: 110℃ (Novolac), 400℃ (MGR202)

Etching: 4Pa, 50W, $O_2/CF_4=15/5cc$

Etching Resistance Evaluations:

Apparatus
SAMCO Etching System (RIE-10NR)
at Mitsubishi Gas Chemical (MGC)

RIE-10NR

EB Evaluation Data / SEM image (previous study)

15nmhp Not Resolve

SEM images of Resist A based on MGR202 were resolved sub 30 nmhp patterns in 40nm thick films.

We optimized formulation and conditions. And we built up Resist B.

EB Evaluation Data / SEM image

SEM images of Resist B based on MGR202 were resolved sub 20 nmhp patterns in 40nm thick films.

EUVL Evaluation Data / SEM image

By courtesy of Center for EUVL, University of Hyogo

SEM images of Resist B based on MGR202 were resolved sub 22.5nmhp patterns in 32nm thick films.

MGC Etching Resistance

An etching rate of MGR202 is better than novolac rasin's. It is expected that MGC's materials have good resolution, because we can use them coating thinly.

- We reported EB/EUVL patterning of the resist containing xanthendiol derivatives (13-biphenyl-13H-benzoxanthen-3,10-diol).
- The EB patterning result showed the resist containing xanthendiol derivative could resolve the 20 nm half-pitch pattern. Furthermore 15 nm half-pitch patterns were partially resolved.
- The EUVL patterning result also showed 20 nm half-pitch pattern.
- An etching rate is 0.91 times of the novolac resin.
- Future study is underway to improve etching-resistant of the resist by using xanthendiol derivatives.

Acknowledgement

Prof. Takeo Watanabe of Center for EUVL, University of Hyogo gave great cooperation to us in EUV evaluation.

We express big gratitude.

We are developing the new xanthene derivative.

- shows high resolution.
- shows good etching resistance.

New xanthene derivative A

EB Evaluation Data

SEM image of the resist based on the new xanthene derivative could be resolved 20nmhp pattern in 40nm thick film.

MGC Future materials

The material, which has an etching rate better than MGR202, is available.